Bulletin of Taiwan Fisheries Research Institute No.37,1984

# **矽藻對重金屬銅、鎘、汞、鋅累積作用**

## 之研究

江章・周賢鏘・丁雲源

Studies on the Accumulation of Copper, Cadium, Mercury and Zinc in Skeletonema costatum

Chang Jiang, Shiarn-Chiang Chou and Yin-yuan Ting

Skeletonema costatum is one kind of phytoplankton-feeder and has widely been used as food of penaeids larvae. The paper mainly studies on the effects of Cu, Cd,  $H_2$ , Zn, with different concentrations in different accumulated duration on Skeletonema costatum. Expecting setting an indicator for the safety of aquatic animals larvae culturing. The results state as follows:

1 The results showed the ability of heavy metal accumulation in Skeletonema costatum

- , Zn is the highest, Cd is the lowest, the accumulated values of Zn, Cu, Hg, Cd, respectively, 186.4 597.1 ug/g dry wt., 13.8 45.2 ug/g dry wt., 23.0-38.8 ug/g dry wt. and 6.2 20.1 ug/g dry wt.
- 2 The higher concentrations of heavy metal treated in culture water, the higher accumulted values got and showed severely in higher concentrations. The growth of Cu and Cd was good in the concentration of 0.1 ppm, but that was suppressed in 0.025 ppm of Hg and 0.5 ppm of Zn.
- 3 Different accumulated duration had no significant variance in accumulated values. Most of the algae reached the highest accumulated values in each group within 12 hrs.
- 4. The CF values of this species appeared various according to different heavy metals and concentrations treated. The CF values of Hg, Zn, Cu, Cd, is  $10^4 - 10^5$ ,  $10^4$ ,  $10^2 - 10^3$  and  $10^2 - 10^3$  respectively.

CF values of the algae increased in Zn, Cu, Cd, groups when the concentrations of these heavy metals increase in sea water, but it did not happen in Hg group.

## 前 髾

矽藻(Skeletonema costatum)為一生長迅速之藻種,於良好光照下,室外大量培養1-2天即可達 50-100×10<sup>3</sup> cells/cc 之密度(廖 1969),為一常被利用為魚蝦貝類人工繁殖初期餌料之藻種,且該藻種在本省高雄港附近,春末至冬初均可採集到,故自廖等(1968~1969)確立草蝦、遊節蝦、砂蝦人工繁殖技術以來,矽藻更廣泛應用於蝦類人工繁殖,以作爲蝦苗眼幼蟲期之生物餌

料,但近年來,此期蝦苗幼生常有大量死亡現象發生(陳1981、陳1981)其原因很多,但都以水質 管理、矽藻品質及重金屬污染為重要因素。目前本省河川遭受工業廢水污染已日趨嚴重( 鄭等 1975 )而工業廢水之污染原( pollutant)種類雖很多,但仍以重金屬造成之毒害最為迫切,此種情形導 致河口及沿岸水族環境受到嚴重破壞,也直接影響了魚蝦貝類繁殖用水之安全性。據陳等 1981年調 查中洲等地繁殖用水重金屬含量,發現已有嚴重污染情形,高雄港附近海水重金屬含量竟高出正常海 水之5-250倍,因此重金屬污染對水產生物生存環境所造成的威脅已不容忽視。

而重金屬之毒性又會因食物鏈之生物濃縮而增強,如日本及瑞典曾經發現重金屬鎘、汞經由食物 鏈之生物累積對人體造成不良影響之病例(Hung et, al 1978. Förstner & wittmam 1979, Nomiyama 1975)。一般而言,海洋中微細藻類及水產生物對重金屬均具有很強之累積能力,而藻 類本身對金屬元素之吸收不具調節作用,故藻類中金屬元素之含量亦可做爲環境中金屬元素狀態之指 標(謙谷 1979)。本試驗則針對矽藻中鍋、鎘、汞、鋅等重金屬累積量及不同濃度、時間之蓄積情 形,作一初步瞭解,期爲該藻種應用於魚蝦貝類幼生初期餌料安全性之參考。

### 材料與方法

**、藻種培養:** 

本試驗使用藻種為 Skelet one ma cost at um ,由繁殖場取回後經數次培養,以確定無其他藻類污染時,試驗前再將收集之藻種以濾淨之海水重覆清洗數次,並以濾淨之海水混合均匀,以供接種用。本藻種於培養期間測定用水及藻體重金屬含量如表1所示,每克乾藻種中含重金屬鋅為0.4178 mg、銅為0.0308 mg、汞為0.0297 mg、鎘為0.0127 mg。

| Conc. Group<br>(ppm) | C <sub>1</sub>  | C <sub>2</sub>  | C <sub>a</sub>  |
|----------------------|-----------------|-----------------|-----------------|
| Heavy metal          | concentration 1 | concentration 2 | concentration 3 |
| Cu                   | 0.001           | 0.010           | 0.100           |
| Cd                   | 0.001           | 0.010           | 0.100           |
| Hg                   | 0.001           | 0.005           | 0.025           |
| Zn                   | 0.020           | 0.100           | 0.500           |

表1 各組重金屬濃度分配表

Table 1 Distribution of concentration in each group of heavy metal

蓄積培養中,各培養液之營養塩(medium)依每噸海水中添加KNO<sub>3</sub>100g、Na<sub>2</sub>HPO<sub>4</sub> 12H<sub>2</sub>O 10g、Na<sub>2</sub>SiO<sub>3</sub>10g及FeCl<sub>3</sub>5g比例施肥,試驗時不加EDTA,以免吸附過量之重金 屬,影響蓄積結果,本試驗使用之重金屬化合物為HgCl<sub>2</sub>、CuSO<sub>4</sub>、ZnCl<sub>2</sub>、CdCl<sub>2</sub>·H<sub>2</sub>O,分别 先配製成1000pm之重金屬離子母液(stock soln.),再依試水量配製成表2中之試驗濃度,同 時以不添加重金屬組為對照組,並接種同量混合均匀之藻種,進行蓄積培養,蓄積期間為2天,並 分别在12、24、36、48小時各以浮游生物網(nytal p-30 made in Switzerland)收集藻

174

種,以供測定。試驗同時並紀錄水溫、照度(ANA model 100,東京光電株式會社)以供參考。

|                | Conc. of sea wat | ter( ppm ) | Conc. of Alga (mg/g dry wt.) |        |  |
|----------------|------------------|------------|------------------------------|--------|--|
| Heavy<br>metal | range            | X          | range                        | X      |  |
| Cu             | 0.032 - 0.045    | 0.038      | 0.0138 - 0.0452              | 0.0308 |  |
| Cd             | 0.040 - 0.052    | 0.045      | 0.0062 - 0.0201              | 0.0127 |  |
| Hg             | ND*-0.0006       | 0.00025    | 0.0230 - 0.0388              | 0.0297 |  |
| Zn             | 0.050 - 0.075    | 0.062      | 0.1864 - 0.5971              | 0.4178 |  |

表 2 蓄積前原藻種及水質含重金屬銅、鎘、汞、鋅之量

ND\*: under detectable.

三試驗前處理與分解:

收集後之藻體先以蒸餾水洗滌數次, 取出藻體以 80 ~ 85°C 烘乾至恒定量(西澤一俊 1979) , 汞組則以 50 ~ 60 ° C 烘乾(Reüchiro等 1979)再測其藻體乾重。 Cu, Cd, Zn 組之藻體以濃 硫酸及1:2濃硝酸進行高熱分解,至分解液變成無色或微黃橙色之澄清液為止,俟冷却後稀釋定 容以備分析。汞組試様則以1:1 濃硫酸及6 w/v% KMnO,在低溫(50~60°C)下分解,直 至KMnO,之顏色不再消失,溶液呈澄清後,加入數滴NH,OH HC1將過量之KMnO,還元,此 時溶液為透明無色,俟冷却稀釋定容以備分析(HITACHI 1974 )另本試驗中水樣之前處理依陳 ( 1981 ) 水質分析方法,試水採樣後即加入濃硝酸使試水之 pH值降至1 左右。

四試樣測定及分析:

銅、鎘、鋅組試様分解後直接以原子吸光分析儀 (Atomic Absorption Spectro photometer ,HITACHI model 170-40)测定。汞組試様則以無焰法(Flameless A.A. method)用汞 附件(Mercury Reduction Unit HITACHI model 207 – 2090)测定,测定同時先以各重金 屬之標準溶液,(Standard metal soln. 日本林純株式會社出品)作出標準曲綫。依此曲綫濃 度與吸光度關係求出各試樣之重金屬濃度,再由藻體重量、稀釋倍數、取樣體積等計算出藻體每克 乾重中所含重金屬量,即可得蓄積量。

> 結 果

試驗結果,矽藻在各重金屬濃度下之生長情形,如表3所示,由表中不難看出在本試驗中 Cu, Cd 0.001 ~ 0.1 ppm組、Zn 0.02 ~ 0.1 ppm組、Hg 0.001 ~ 0.005 ppm組, 矽藻生長情形雖有變 化,但在同一時間內,各組並無顯着差異,但在Hg 0.025 ppm 組及 Zn 0.5 ppm 組則由表可以明顯 看出,其生長值均顯着降低,尤其Zn 0.5 ppm組幾乎無法生長。

蓄積結果如表 4 所示,最低濃度組 Cu, Cd, Hg0.001 ppm、Zn 0.02 ppm 時, 矽藻對鋅之蓄積 **釐**爲 0.4621~0.7142、汞爲 0.0330~0.0726 、 銅爲 0.0321 ~ 0.0345 、 鎘爲 0.0170 ~ 0.0298 與原藻 種重金屬含量表1中,鋅0.478、銅0.0308、汞0.0297、鍋0.0127比較,增加情形並不顯着,但若 濃度較高時,蓄積量即增加甚多,如表4 中Cu, Cd 0.01 ppm 組,蓄積量分別為 0.0875 ~ 0.2155

## 表3 矽藻不同濃度重金屬蓄積期間之生長情形

Table 3 The Absorbance values of Skeletonema costatum in different treatedconcentration of heavy metal at different duration

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |         |                        |       | •<br> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------|---------|------------------------|-------|-------|
| Abs. 3<br>Conc. of<br>heavy meta<br>(ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Culture<br>390 time<br>(hrs) | 0       | 12      | 24                     | 36    | 48    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001                        | 0.003   | 0.046   | 0.045                  | 0.075 | 0.062 |
| Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005                        | 0.003   | 0.065   | 0.042                  | 0.060 | 0.065 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.025                        | 0.003   | 0.021 _ | 0.021                  | 0.048 | 0.048 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | . • · · |         | e transformation and a |       | ·     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001                        | 0.003   | 0.055   | 0.050                  | 0.081 | 0.071 |
| Î Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.010                        | 0.003   | 0.069   | 0.040                  | 0.070 | 0.070 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.100                        | 0.003   | 0.058   | 0.038                  | 0.065 | 0.059 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                            |         |         |                        |       |       |
| an thuếng chiến<br>Thuếng chiến c | 0.001                        | 0.003   | 0.058   | 0.041                  | 0.057 | 0.038 |
| Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010                        | 0.003   | 0.048   | 0.042                  | 0.072 | 0.065 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.100                        | 0.003   | 0.069   | 0.040                  | 0.064 | 0.067 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.020                        | 0.003   | 0.050   | 0.055                  | 0.064 | 0 045 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · ·                      |         |         | 0.000                  | 0.004 |       |
| Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.100                        | 0.003   | 0.046   | 0.052                  | 0.055 | 0.042 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.500                        | 0.003   | 0.025   | 0.019                  | 0.010 | 0.018 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |         | •                      |       |       |
| Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>b</b> 1                   | 0.003   | 0.050   | 0.045                  | 0.079 | 0.070 |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | · · · · |         |                        |       |       |

| ccumulat           | ed Culture time |          |                                                                           |                                       |        |
|--------------------|-----------------|----------|---------------------------------------------------------------------------|---------------------------------------|--------|
| (m/g               | dry wt ) (hrs)  | 12       | 24                                                                        | 36                                    | 48     |
| leavy<br>netal gro | ups             | <b>.</b> | dala dala gine da<br><u>Sector dala dala dala dala dala dala dala dal</u> | · · · · · · · · · · · · · · · · · · · |        |
| · · · ·            | C ont rol       | 0.0251   | 0.0334                                                                    | 0.0353                                | 0.0366 |
| Cu                 | C,              | 0.0345   | 0.0321                                                                    | 0.0323                                | 0.0359 |
| Cu                 | C <sub>2</sub>  | 0.1477   | 0.0875                                                                    | 0.0937                                | 0.2155 |
|                    | C a             | 0.8090   | 0.6649                                                                    | 0.5225                                | 0.5889 |
| -                  | Control         | 0.0125   | 0.0210                                                                    | 0.0126                                | 0.0186 |
|                    | C <sub>1</sub>  | 0.0298   | 0.0246                                                                    | 0.0200                                | 0.0170 |
| Cd                 | C <sub>2</sub>  | 0.0445   | 9.0412                                                                    | 0.0895                                | 0.1441 |
|                    | C,              | 0.3461   | 0.3049                                                                    | 0.3946                                | 0.8659 |
|                    | Control         | 0.0277   | 0.0333                                                                    | 0.0364                                | 0.0348 |
|                    | C <sub>1</sub>  | 0.0726   | 0.0527                                                                    | 0.0330                                | 0.0565 |
| Hg                 | C,              | 0.1279   | 0.0702                                                                    | 0.0662                                | 0.1238 |
|                    | Ca              | 0.3919   | 0.2970                                                                    | 0.2623                                | 0.1827 |
|                    | Control         | 0.6174   | 0.7100                                                                    | 0.4954                                | 0.6220 |
|                    | Ci              | 0.7142   | 0.5437                                                                    | 0.4621                                | 0.6220 |
| ζπ <sub>.</sub>    | C,              | 1.7759   | 1.2379                                                                    | 2.6591                                | 2.687  |
|                    | с.              | 19.3413  | 14.9494                                                                   | 13.0167                               | 11.058 |

表4 不同濃度、時間, 矽藻對銅、鎘、汞、鋅之蓄積情形

Table 4 Average accumulated values of Cu, Cd, Hg and Zn groups on Skeletonema

、0.0412~0.1441約為原藻種之3-12倍。而銅0.1 ppm 組蓄積量達0.5225~0.8090, 錫蓄積 量達0.3049~0.8659, 均比原藻種高出甚多, 鋅組0.1 ppm蓄積量為1.2379~2.6870, 約為原藻 種之3~6.5倍,當添加濃度為0.5 ppm時,蓄積量高達11.0585~19.3413,比原藻種增加26.5 ~45.3倍。而汞組當濃度改變時其蓄積量之改變並不如其他元素明顯,但其蓄積量仍隨濃度增加而增 加,如表4中汞濃度0.005 ppm組蓄積量0.0662~0.1279,0.25 ppm 組蓄積量為0.1827~0.3919 ,約為原藻種之6.2~13.2倍,又由表4可知Cu組在同一濃度時,其蓄積量雖因時間不同而有變化 ,但變化幅度並不大,只在0.01 ppm組48小時有較高之蓄積量約為12-36小時之2倍左右。而汞 與鋅組蓄積量則有隨時間增加而稍微減少之趨勢,但在48小時又會有回升之現象,此現象出現在低濃 度時。至於錫組在高濃度時則蓄積量有隨時間增加而增加之趨勢。但概言之,各組之蓄積量雖因蓄積 時間而有不同,但變化幅度可以說不大,且蓄積量除錫組外,大都在12小時已達蓄積高峯。

上述結果進一步以2項變方分析(Two way ANOVA Analysis)結果如表5,亦可明顯得知,蓄積時間對蓄積量之影響並不顯着,但濃度對蓄積量則有極顯着之影響,亦即矽藻對重金屬 Cu、 Cd、Hg、Zn之蓄積量受環境中重金屬濃度之影響比蓄積時間之影響更爲顯着,同時,時間 Q濃度 交互作用對蓄積量之影響並不顯着。

| 表5 | 銅、鎘、 | ·鋅、 | · 汞各組間時間 · | 濃度與蓄積量之 2 次變方分析 |
|----|------|-----|------------|-----------------|
|----|------|-----|------------|-----------------|

Table 5 ANOVA table describing the interations of accumulated values between time and concentration for Skeletonema costatum

| Heavy<br>metal | Source of<br>variation | df               | SS        | MS        | FS        |
|----------------|------------------------|------------------|-----------|-----------|-----------|
|                | time                   | 3                | 0.0578    | 0.01926   | 1.40      |
| Cu             | concentration          | 3                | 4.1308    | 1.37695   | 100.32 ** |
| •              | time × conc.           | 9                | 0.6177    | 0.01886   | 1.37      |
| •              | time                   | 3                | 0.0016    | 0.00054   | 0.04      |
| Cd             | concentration          | 3                | 2.3306    | 0.77685   | 52.38 **  |
|                | time × conc.           | 9                | 0.0085    | 0.00095   | 0.06      |
|                | time                   | 3                | 0.0108    | 0.00360   | 0.48      |
| Hg             | concentration          | 3                | 0.6267    | 0.20890   | 27.96 **  |
|                | time $\times$ conc.    | 9                | 0.0152    | 0.00169   | 0.23      |
|                | time                   | 3                | 3.7777    | 1.25924   | 0.24      |
| Zn             | concentration          | 3                | 2209.1600 | 736.38800 | 142.67 ** |
|                | time × conc.           | 6 <b>9</b> an 19 | 11.8010   | 1.31123   | 0.25      |

\* \* highly significant.

178

為更進一步了解蓄積量與濃度變數之關係,因此將表4之數據加以整理以供最小顯着差測驗( L.S.D 測驗),發現Cu組0.01、0.001 ppm及對照組間無顯着差異,但與0.1 ppm 組均有極顯着 差異。Zn 0.5 ppm組與其他各組間均有顯着差異,且在48 小時0.1 ppm 組與其餘各組亦有極顯着 差異。Cd組與Zn類似,除0.1 ppm組與其餘各組間均有極顯着差異外,48 小時時0.01 ppm 組與 其餘各組也有極顯着差異。Hg組0.025 ppm組與其餘各組有極顯着差異,48 小時0.005 ppm 組與 其餘各組之有極顯着差異。Hg組0.025 ppm組與其餘各組有極顯着差異,48 小時0.005 ppm 組與 其餘各組差異亦顯着。此結果顯示,矽藻對重金屬Cu、Cd、Hg、Zn 之蓄積濃度低時,其累 積金屬量並無很大改變,但在濃度高時則會顯着增加,且在Cd及Zn兩組,蓄積量與濃度間之差異會 因蓄積時間之增加而在低濃度間顯着。

|                |                      | Cu                   |                          | Cd                 |                     |                           |  |
|----------------|----------------------|----------------------|--------------------------|--------------------|---------------------|---------------------------|--|
| groups         | sea water<br>( ppm ) | alga<br>( mg/g dry ) | C.F.<br>×10 <sup>3</sup> | sea water<br>(ppm) | alga<br>(mg/g dry ) | C.F.<br>× 10 <sup>3</sup> |  |
| C <sub>1</sub> | 0.038                | 0.0337               | 0.887                    | 0.052              | 0.0229              | 0.440                     |  |
| C,             | 0.049                | 0.1362               | 2.778                    | 0.105              | 0.0798              | 0.760                     |  |
| C <sub>3</sub> | 0.128                | 0.6463               | 5.049                    | 0.190              | 0.4779              | 2.515                     |  |
| control        | 0.042                | 0.0326               | 0.776                    | 0.050              | 0.0162              | 0.324                     |  |
| before test    | 0.038                | 0.0308               | 0.811                    | 0.045              | 0.0127              | 0.282                     |  |

表 6 矽藻在銅、鎘各組之蓄積量對各蓄積海水之生物濃縮因子(C.F.)

討 論

汞高濃度時會使藻類染色體產生異常現象,有絲分裂受到干擾而消失,亦能破壞粒腺體之正常功能。鋅爲參與光合作用CO。固定中之元素(Levid, R.A. 1962)但濃度過高時則有強烈毒性作用產生,本試驗中亦發現汞0.025 ppm時,矽藻之生長即受到明顯抑制,鋅0.5 ppm時即幾乎無法生長。而銅、鍋0.1 ppm時對矽藻之生長仍無影響,因此就矽藻而言仍以汞毒性作用最強。又本試驗中,矽藻在24小時及48小時之生長情形均比12小時及36小時略低,此種情形可能因本試驗於室外進行,由圖1中12~24小時 36~48小時間光照均爲0,矽藻無法進行光合作用,以致生長停頓所致,但此種情形,由本試驗中得知,對重金屬之蓄積量並無顯着影響,由此可見,光照爲影響矽 藻生長之重要因素,但對重金屬蓄積量之影響並非一重要因子。

|                | Hg                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Zn                   |                    |               |
|----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|--------------------|---------------|
| groups         | sea water<br>( ppm ) | alga<br>(mg/g dry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C.F.<br>×10' | sea water<br>( ppm ) | alga<br>(mg/g dry) | C.F.<br>× 104 |
| C <sub>1</sub> | 0.002                | 0.0537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.685        | 0.092                | 0.5866             | 0.638         |
| C,             | 0.004                | 0.0930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.425        | 0.185                | 2.0900             | 1.130         |
| C:             | 0.026                | 0.2835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.090        | 0.620                | 14.5915            | 2.354         |
| control        | ND *                 | 0.0331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nc. **       | 0.060                | 0.6112             | 1.019         |
| before test    | 0.00025              | 0.0297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.880       | 0.062                | 0.4178             | 0.674         |
|                | ·                    | 1. Sec. 1. Sec |              |                      |                    |               |

表7 矽藻在汞、鋅各組之蓄積量對各蓄積海水之生物濃縮因子(C.F.)

Table 7 Average accumulated values and CF values in each Hg, Zn group

\*: under detectable.

\* \*: not comparable.



圖1 蓄積期間光照與水溫變化情形

Fig. 1 The relationship between light intensity values, tempreture and culture time.

一般而言,海洋浮游藻類能累積微量元素,重金屬10°~10°倍於周圍海水,而其累積量之大小受 受藻種、重金屬種類、生長環境、營養成分之不同而有不同變化。本試驗中矽藻對重金屬之蓄積 量亦因元素不同而有差異,以鋅之蓄積量最高,汞、銅次之,鎘最低,而且當海水中金屬濃度增加, 蓄積量亦會隨之增加,因此如以受到重金屬污染之水源培養矽藻,即有可能對攝食之水產生物幼生造 成間接影響。又重金屬銅、汞、鎘、鋅等4種元素對水產生物之毒性,雖因生物種類而有不同,但一 般均以汞之毒性最強,銅、鎘次之,鋅較低,且汞之毒性遠化其他重金屬毒性強烈甚多,世界糧農組 織(FAO 1971)亦將汞劃分爲第1級污染質,毒性最強。因之本試驗中雖然鋅之蓄積量最高,但就 毒性而言,仍不似蓄積量次之之汞來得重要,且汞之累積量高達 10°倍於周圍海水,爲4種元素中最 高者,值得注意。

## 摘 要

本文主要探討海洋中常見浮游藻類一矽藻(Skeletonema costatum)在銅、鎘、汞、鋅等重金 屬之蓄積情形。及不同濃度、時間對蓄積量之影響,期爲應用該藻種於魚蝦貝類幼生初期餌料安全性 之參考,試驗結果如下:

一般情形, 砂藻累積重金屬量以鋅為最高, 論 186.4~597.1 μg/g dry wt、銅13.8~45.2 μg/g
 dry wt 及汞 23.0~38.8 μg/g dry wt 次之, 鎘累積量最低為 6.2~20.1 μg/g dry wt。

二當海水中重金屬濃度增加時, 矽藻對此4 種元素之蓄積量會隨濃度增加而增加。且在濃度愈高時, 增加情形更顯着。但汞濃度達0.025 ppm、鋅濃度達0.5 ppm時, 矽藻之生長即受到強烈抑制, 而 銅及鎘在0.1 ppm時對矽藻之生長仍無影響。

三不同蓄積時間對矽藻重金屬蓄積量並無顯着影響,而且大都在12小時前已達到蓄積高峯。
四矽藻對重金屬之累積倍數(C.F. Value)因重金屬種類及濃度而有不同,汞之累積倍數是為10°~
10°倍、鋅為10°倍左右、銅及鎘為10°~10°倍。又矽藻對銅、鎘、鋅等3種元素之累積倍數,

隨海水中金屬濃度之增加而增加,但汞則無此種情形。

#### 謝辭

本試驗得以完成感謝本分所同仁盧浩森、黃智育之協助,及實驗期間承海洋學院水產養殖系主任 陳建初教授惠允借用分析儀器及指導,助理劉秉忠君諸多幫忙,在此謹致最大謝忱。

## 参考文獻

1 廖一久、黃丁郎、勝谷邦夫(1969). 草蝦繁殖試驗, JCRR Fisheries Series, 8, 67-71.
 2 黃丁郎、丁雲源、謝錫欽(1969). 斑節蝦人工繁殖及養殖試驗。 JCRR Fisheries Series, 7,54-65.
 3 廖一久、丁雲源、勝谷邦夫(1969). 砂蝦之人工繁殖試驗。 JCRR Fisheries Series, 8.

4. 陳弘成(1981). 繁殖場草蝦苗大量死亡研究,中國水產, 348, 15-22.

- 5.陳惠彬(1981).台灣養蝦之近況及問題,中國水產,345,18-23.
- 6. 鄭森雄等(1975). 台灣西南沿海養殖貝類大量死亡原因之研究。JCRR Fisheries series , 18.
- 7. Hang, T.C., A. chuang and I.O. Yu (1978). Anodic stripping Voltammetric Analysis of Heavy Metals in the Natural Waters and Aquatic Organisms in Taiwan. Bull. Inst. Chem. Academia Sincia, 25, 35-46.
- & Forstner, U. and G.T.W. Wittmann (1979). Metal Pollution in the Aquatic Environment, 1-300, Springer-Verlag Berlin Heidelbery, New York.

181

- 9. Nomiyama, K. (1975). Toxicity of Cadimium-Mechanism and Diagnosis in Heavy Metals in the Aquatic Environment (P.A. Krenkel ED), 15-23.
- 10.謙谷明善、高橋幹夫、森田良美(1979). 海産砂藻による亞鉛の吸收について日水誌,45(6), 715-719.
- 11 西沢一俊、千原光雄(1975). 藻類研究法, 274 280.

12 Reiichiro Hirota, Motoo Fujiki and Shizuko Jajima (1979). Mercury contents of Zooplankton Collected in Tropical Pacific Ocean. Bull. Tap. Soc. Sci. Fish., 45 (11), 1449 - 1451.

13.HITACHI (1974). Instruction Mannal for the model 207-0290, 303-9352 Mercury Reduction Unit, HITACHI, Ltd Tokyo Japan, 1-14.

14.陳建初(1981).水質分析,九大圖書出版.

ter and the generation of

15 Levid, R.A. (1962). Physiology and Biochemistry of Algae.

16 FAO (1971). Supplement to the Report of the Technical Conference on Marine Pollution and It's Effects on Living Resources and Fishing FAO, Fish. Reports, 99 Suppl, 1.

1.11

 $\mathcal{L}(\mathbf{r}_{i}, \mathbf{r}_{i})$  , where  $\mathcal{L}(\mathbf{r}_{i})$  is the second secon

na ata su Na sasat

in the second constants if is

· · ·

化碱化化物碱酸钙 医马尔氏试验 计输入部分 网络马克尔 网络马克尔 计分子分子 网络马马克马马马马克马马马马

1.1