Bulletin of Taiwan Fisheries Research Institute No. 33, 1981

新主教型 杂形 人名德马马斯门克利

魚醬油速釀法試驗—]

陳淑珍・黄 堯

Studies on the Rapid Fermentation of the fish Sauce II

Shuw-Jen Chen and Yao Huang

In order to improve the quality and shorten the fermentation period, We try to add the soy koji in various ratio, such as 5%, 7% and 10%, in the raw meat of Lizard fish (Trachinocephalus myops). The fermentation carried out at $45\pm2^{\circ}$ C,pH5 for 2 weeks.

- 1. The fermentation take place rapidly within begining to 12th day, and then keep slowly state.
- 2. The variation of pH is very slight during the fermentation, and the products all apear week acid.
- 3. The yield of fish sauce are 50.28%, 46.91% and 34.64%. This results show the yield are not in proportion to the quantity of soy koji added.
 - 4. The amount of total-N and amino-N increased by addition of soy koji.
 - 5. In the practical operation, it is more suitable when the soy koji added in 5%.
- 6. With addition of 5-10% soy koji, quality of the fish sauce becomes excellent by an identification of the organoleptic judgment.
- 7. To prevent the fish sauce from having molds or putrefaction, 3% alcohol was added. We found the fish sauce keep good state within 12 weeks.

前曹

魚醬油是以小型魚類的魚體(包含內臟)加入適當的食鹽量後,放入缸中。置於露天下。受陽光之溫熱,藉魚體本身的酵素任其自家消化(Autolysis or Autodigestion),將魚類的蛋白質分解成胜狀(peptide)及氮基酸,而呈現特殊鮮味,約需半年至一年長時間的釀造。魚醬油在菲律賓稱爲Patis,越南。高棉稱爲Nuoc-mam,泰國稱爲Nam-pla,日本有 Shiottsuru. Ishiru. Senji等類似產品,甚至歐洲也有所謂 Anchovy Souce 產品,臺灣過去則稱爲「魚露」,幾年前曾以商品姿態上市,但不久即消失,其原因,大概係腥味太濃,未能廣被大衆接受所致。本省漁業發達,漁獲量甚豐,其中有五分之一的小型魚及養殖的小魚,人們不喜食,大多充作家禽及養魚飼料,甚爲可惜,吾人可利用此等小魚作爲魚醬油原料。

一般魚醬油釀造時間太長,味道太鹹,腥味重,不易推廣成大衆化口味食品,爲解決上述缺失, 研究完成此項製法,現介紹於後,以供加工及利用上之參考。

材料與方法

一、試驗材料(1)狗母魚 (臭青仔・Trachinocephalus myops) (2)精製鹽 (Nacl 99.5%以上) (3) BHA (Butyl hydroxy anisole, C₁₁H₁₆O₂) (4) 己二烯鉀 (Potassium sorbate, C₆H₇O₂K (5)大豆麴 (Soy Koji・市販品) (6)酸酵桶・

二、魚醬油速釀法

以添加大豆麴5%,7%,10%三組進行。

A組: 狗母魚(臭靑仔) 絞碎: 加入 NaC1量 12%, BHA 0.2%, 己二烯鉀 0.1%, 調整 pH為 4.65, 再添加粉碎之大豆麴 5%, 混合均匀装入醱酵桶內, 置於 45 ± 2℃恒溫中, 醱酵 14 日。

B組: 狗母魚(臭青仔) 絞碎,加入 NaCl量 12%, BHA 0.2%,已二烯鉀 0.1%,調整 pH為 5.00,再添加粉碎之大豆麴 7%,混合均匀裝入醱酵桶內,置於 45 ± 2℃ 恒溫中,醱酵 14 日。

C組: 狗母魚(臭青仔) 絞碎,加入 NaCl量 12%, BHA 0.2%,己二烯鉀 0.1%,調整pH 為 5.00,再添加粉碎之大豆麴 10%,混合均匀裝入醱酵桶內,置於 45 ± 2℃ 恒溫中,醱酵 14 日。

魚醬油釀造期間,每日混合攪拌一次,務使作用均匀,並維持水溫在 45 ± 2 ℃ ,每隔一定時日,採樣測定各種成分與項目,醱酵 14 日完成後,先使用過濾網粗濾,未消化物(殘渣)再加以壓 搾過濾,務使液體部份完全分離,粗濾液再用遠心分離機分離,所得之澄清濾液即爲初成品,取樣測定各項成分。鑑於腥味之來源主要爲魚油所致,故將初成品在 90 ~ 100° C中加熱 10 分鐘,藉以破壞酵素活性,兼具殺菌作用,然後迅速予以冷却至室溫,再裝入分液漏斗中靜置片刻,分離上層之魚油除去之(除澀),所得已除澀之液體再以濾紙(Toyo No 1)過濾之,即得魚醬油成品,取樣測定各項成分。

三、分析方法

本試驗之分析依下列方法實施:

- (1)水分、全氮、粗脂肪、粗灰分:依常法測定。
- (2)胺基態氮:採用 Formol 滴定法。
- (3)塩分:採用硝酸銀滴定法。
- (4) pH:用JENCO, DIGITAL pH METER 607 測定。
- (5)收率(製成率)%= 無醬油生成量(ml) 原料魚的重量(10,000g) × 100

結果與討論

鑑於一般及「魚醬油速釀法研究(I)」(未發表)所製成之魚醬油具微苦味,腥味尚難盡除,且缺乏大豆醬油具有之芳香,繼續研究本項試驗。

本試驗原料魚之一般化學組成分如 Table 1 所示。

Table 1 Chemical compositions of Lizard fish.

Items	of analysis	Moisture	Total-N	Crude Fat	Crude Ash	V.B.N
Sample		%	%	%	%	mg%
Lizard	fish	76.55	2.98	2.91	3.09	21.3

1添加大豆麴量對於熟成期間及魚醬油成分品質之影響。

為原解釀造期間各成分之變化與比較,及添加大豆麴量對魚肉蛋白質分解效果,分成A、B、C 三組實施。使用狗母魚(臭青仔)肉各10㎏為原料,分別加入500㎏(5%),700g(7%),1000g (10%)大豆麴(豆經播種菌發黴者稱豆麴),其餘添加物如加速釀法中所述。

目·結果列於Table 2及Fig 1、2、3中。

incubation time			Soy	, Koji 1	.1 %	•		*.	Soy	Koji	5.		oS.	Soy Koji	7%		Soy K	Soy Koji 10%
Item of (day)	4	7	ı ı	14	16	21	24	83	4	1	11	14	4	7	11	14	7	14
yield of sance %	35.17	35.17 39.80 49.02	49.02	52.53	53.40	54.19	55.30	55.32	30.25	34.49	43.63	50,28	30, 12	33.79	41.22	46.91	24.47	34.64
2487 24 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.	4.95	5.10	5.15	5.15	5.15	5.15	5.15	4.75	4.75	4.75	4.70	5.20	5.05	. 8	4.95	5.05	5.02
NaCl conc g/100ml	18.25	18.25 18.10 18.10	18.10	17.95	17.80	17.65	17.65	17.65	15.10	15, 15	15.15	15.15	1	14.58		14.63	14.63 14.90	14.90
total N g/100ml	 	1.69	1.69 1.82	1.88	1.88 1.91	1.96	1.99	1.99	2.35	2.57	2.65	2.68	2.43	2.66	2.78	2.78	2. 82	2.85
amino N mg/100ml	373.45	373.45 509.20 651.84 724.20 768.34 840.83 869.12 882.70 687.36 780.85 888.84 953.74 794.5	651.84	724.20 ?	68.34 8	40.83 ₹	389. 12 8	382.70 (587.36	780.85	888.84	953.74		915.34	915.34 1066.32 1101.50 964.18 1130.86	1101.50	964.18	130.86
residue %.	57.87	57.87 50.84 44.95	44.95	43.76	42.96	40.84 40.52		40.25	62.61	57.57	42.46	38.02	63.67	58.01	45.06	43.82	88 88	65.21
total N of residue %	3.59	3.59 3.42	3,38	3.32	3.30	3.21	3, 13	3.13	1	3.42	I	3,31	1	l		1	3.40	3.24
moisture of residue %	59.50	59.50 60.04 63.52	63.52	54.48	61.74	8.94	65.39	55.85	1	58.66	t	48.85	ľ	l			59.97	51.14
Ash of residue %	14.09	14.09 13.59\ 14.93	14.93	17.21	15.74	13.51	13.21	17.24	1	13.81	1	21.00	1	I	1	. 1	13.09	17.39
digestibility %	24.41	24.41 30.13 35.82	35.82	38.52	40.23 42.90	42.90	43.67	44.36	29.25	30.38	33.54	35.59		32.70 34.41	38.35	39.62	34.19	39.68

The fish sauce of the rapid fermentation (I)

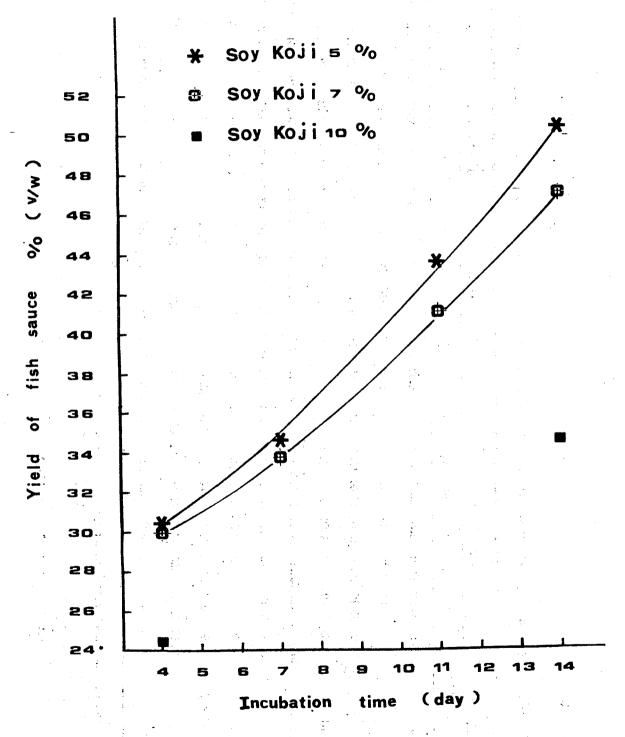


Fig. 1 Changes of yield of fish sauce within fermentation with different Soy Koji concentration.

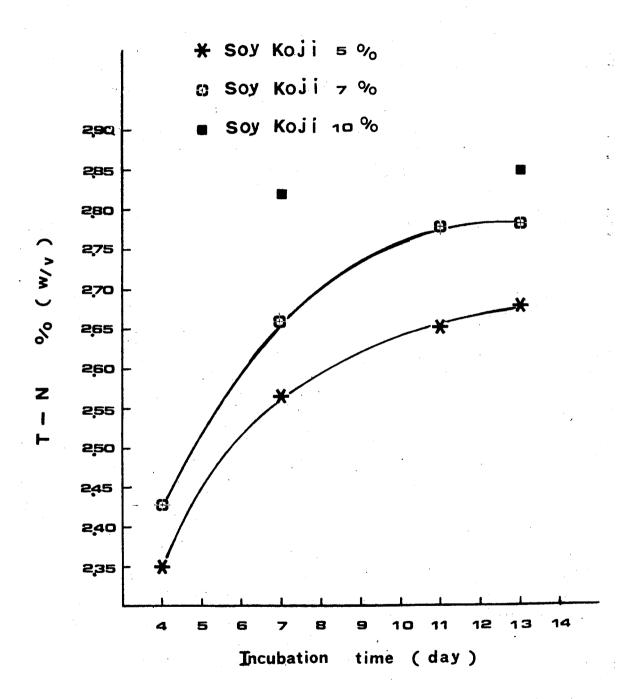


Fig. 2 Changes of total nitrogen in fish sauce within fermentation with different Soy Koji concentration.

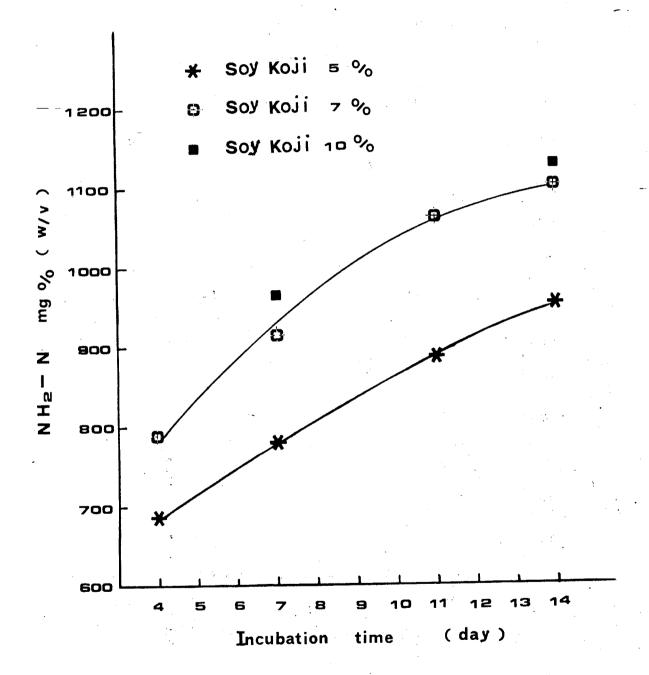


Fig. 3 Changes of amino nitrogen in fish sauce within fermentation with different Soy Koji concentration.

釀造期間,此三組5日起即開始散發出大豆之芳香,於第7日打開醱酵桶取樣時,有濃郁之香氣生成,經8~9日三組均充分液化,至第10日時,原有之魚腥味,幾乎消失殆盡,至12日起,分解作用即呈緩和。

大豆麴水分含量僅為 11·21 %,因與原料魚混合時,吸收魚肉中之水分,致使酵素水解魚肉蛋白質之作用緩慢,於第4日取樣測定時,魚醬油醪相當粘稠,魚肉大部分仍未完全被分解,因此造成釀造初期魚醬油收率甚低,依添加大豆麴量之增加而減少,其中尤以添加 10 % 大豆麴之 C 組最低,其第七日之收率僅爲 24·47 %,而以添加大豆麴 5 %量之 A 組最高爲 34·49 %。

食塩濃度以防腐爲目的,濃度過高會阻害麴菌酵素之作用,影響酵素活性,使消化受阻,妨碍原料成分之分解與溶出,且成品中塩度太高時,不易爲大衆喜愛,塩度太低則菌類生育旺盛,易於腐敗,故使用 12 ~ 18 % 塩量,但此用塩量仍無法完全抑制菌類繁殖,因此添加抗氧化劑—BHA 0.2%,肉類保存劑—己二烯鉀 0.1%,以防止魚醬油釀造期間魚油氧化變質,兼具防腐效果。

考慮使用製醬油用大豆麴添加,不僅因其價廉,最重要的是大豆麴對於魚醬油香氣,風味與品質之改善,有莫大的效果,較「魚醬油速釀法研究(I)」中所採用添加之Bromelain、Aspergillus Soyae、Protease-mix. 諸方法爲優。將大豆麴紋碎添加,主要爲使大豆麴上之菌絲與魚肉均匀混合,增加接觸面積,使魚肉蛋白質易受酵素作用,加速分解,縮短釀造時日。

由 Table 2 可知,魚醬油收率,以使用大豆麴量多者爲低,主要爲大豆麴的水分含量低,吸收魚肉中之水分所致。但 TN、AN及消化率均隨著大豆麴量的增加而增加,添加大豆麴 5 %之 A 組從第 4 日 TN含量爲 2.35 g/100ml 增至第 14 日醱酵終止爲 2.68 g/100ml ,B 組爲從第 4 日 2.43 g/100ml 增至 2.78 g/100ml,C 組爲從第 7 日之 2.82 g/100ml 增至第 14 日含量爲 2.85 g/100 ml,AN 含量,A 組在 687.36~953.74 mg/ml 間,B 組在 794.50~1101.50 mg/100ml 間,C 組在 964.18~1130.86 mg/ml 間,可知C 組含量最高,其第 7 日 AN含量即已達 A 組 14 日醱酵終止時之含量,由此可知,大豆麴不僅能分解大豆蛋白,亦可促使魚肉蛋白質分解之功效。

在分解釀造期間,魚醬油醪中pH的變化甚微(如Table 3)由此點及釀造期間所具有之芳香味,可知並無變敗情況發生,所得生魚醬油pH,A組爲4.70,B組爲4.95,C組爲5.02,均爲微酸性。釀造過程中,塩度變動不大,大致維持在12~16%間,與一般大豆醬油之塩度相近,易爲消費大衆所接受。

2 生魚醬油,熟魚醬油與二淋油成分品質之比較

為明瞭生魚醬油、熟魚醬油與二淋油間成分變化,於釀造終止時,將壓搾、離心、過濾所得之生魚醬油,取一部分在90~100℃中加熱10分鐘後,冷却除澀,用Toyo Na 1 濾紙過濾,再補足因加熱所蒸發之水量,而得熟魚醬油,取樣測定各項成分。爲顧及經濟利用價值,將過濾分離之殘渣,加等量之12%塩水,於100℃加熱10分鐘,再補足因加熱所蒸發之水量,即俗稱之"二淋油"。茲將生魚醬油,熟魚醬油與二淋油之成分例如Table 4。

Table 3 Changes of pH value of fish sauce during the fermentating period .

add	ed area	Soy Koji	Soy Koji	Soy Koji
day		5%	7%	10%
	1	4.65	5.00	5.00
	2	4.60	5.00	4.95
	3 -	4.58	4.95	4.90
.4	1	4.55	5.00	4.85
	5	4.55	4.90	4.85

 6	4.60	4.95	4.90
7	4.60	4.95	4.90
8	4.55	4.90	4.85
9	4.57	4.80	4.80
10	4.55	4.75	4.75
11	4.55	4-60	4.75
12	4.55	4.85	4.85
 13	4.60	4.80	4.70
14	4.60	4.90	4.80
TA	0		

Table 4. Chemical composition of fresh, boiled and the second extracted fish sauce.

added area	Soy	Koji	5%.	Soy K	oji 7%	Soy	Koji 10	%
fish sauce	fresh	boi led	the second	l fresh	boiled	fresh	boiled	the second
analysis	·		extracted	1				extracted 5.16
pH	4.70			4.95 14.63	4.75	14.90		
conc. NaCl g/100ml total N g/100ml		2.17		2.78	2.74			0.87
amino N mg/100 ml			279.31	1107.50	1043.25	1130.86	810.67	367.86

由 Table 4 觀之,此等魚醬油均屬微酸性, TN 及 AN 含量,生魚醬油較熟魚醬油豐富。添加大豆 麴量 5 %之 A 組,二淋油 TN 量爲 0.71 g/100 ml, AN 量爲 279.31 mg/100 ml,添加大豆 麴量 10 %之 C 組,二淋油 TN 量爲 0.87 g/100 ml, AN 量爲 367.86 mg/100 ml,尚具利用價值,可酌量依比例添加於原魚醬油中,而達經濟目的。

3.魚醬油品質之官能評鑑

色澤:依大豆麴添加量增多,色澤有加深趨勢,其中以A組之色澤最淡,第七日之分解液,A組 爲紅橙色,依序漸次加深,C組爲深濃紅橙色。至第14日醱酵終止時,所得之生魚醬油均爲透明之澄 精液,色澤由A組之紅褐色漸次加深至C組之深紅褐色,加熱後色澤因褐變而加深(暗紅褐色),其 二淋油色澤較淡,均爲紅橙色。

6)魚醬油成色是褐變的結果,醬油色的主要成分是Melanoidine,乃爲胺基-碳基(Amino-Carbonyl)反應後,形成的一種褐變物質。於加熱時發生急速褐變,色澤加深,同時產生魚醬油之燒熱香味,其褐變包括(1)非氧化性褐變反應一氨基酸、Peptide等胺基化合物與五碳醣,六碳醣等醣類,於無氧狀態下加熱,生成胺基一羰基化合物。(2)氧化性褐變一於氧氣下加熱,產生褐變中間產物,以及進行Melanoldine 重合反應,足見魚醬油於加熱後需迅速予以冷却至室溫,再予密封,以防氧化褐變,色澤加深及揮發性芳香物質逸失,使品質低下之處。

味道:此三組魚醬油幾無腥味,且具濃厚鮮甘味及濃郁芳香,品嚐結果,尤以B、C兩組爲佳,已無如「魚醬油速釀法研究(一」中添加Bromelain所製成之魚醬油微苦味的缺點存在。

香氣:大體而言,添加大豆麴量在5%以上時,所釀造之魚醬油均有良好的香氣,尤以添加大豆 麴量7%,10%之B、C兩組特强,具濃郁之大豆醬油芳香,與魚醬油本身所特有之鮮美,共同舊 釀成良好之香氣。

4. 添加 3 % 量酒精對於魚醬油之防黴、防腐效果。

爲防黴兼具殺菌效果,本試驗之魚醬油均添加3%的食用酒精,酒精對魚醬油之防黴效果,似與

Table 5. Comparison of chemical composition of various sauce

kind	Nan	Nam — pla		Shiottsuru	2	粒	脫脂大	2	-			The	The fish sauce of the rapid	ce of	the ra	pid
name	+)	(ナンブラ)		(12,28)	(&	契 (豆的塩		Ariii Sauce	ance			fermentation (I)	tation		7
items o f	珠 露	露 金牌魚露	就魚騾	AT All All DI B	TO T	良質	酸加水	-	=	≥	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		В		S	
analysis	(唐双合)(唐双合)(泰國露	(唐双合)	(泰國霧)	分解物	-	a	=	fresh	boi led	fresh boiled fresh boiled fresh boiled	oiled f	resh bo	iled
Hď	5.4	5.4	2.8	5.7 5.9 5.8 5.9 5.9 4.7 5.1	8 5.9 5.	9 4.7	5.1	.	1.	1	4.70	4.70 4.76	4.95	4.75	5.02 4.98	4.98
total Ng/100mI	1.78	0.90	2.56	2.01 1.86 0.84 0.66 0.39 1.50 2.42 1.442 1.562 1.795 1.872 2.68	4 0.66 0.3	9 1.50	2.42 1.	,442 1.	562 1.79	5 1.872	2.68	2,17	2.78	2.74	2.85	2.20
Nacl g/100ml	26.6	28.9	26.5	26.9 27.6 29.1 27.4 26.8 17.7 18.2	1 27.4 26.	8 17.7	18.2	1	. !		15.15	15.15 12.55	14.63 14.33	14.33	14.90 10.22	10.22
aminoNmg/100ml	1	3	; 			1	· -	478 5	519 576	655	953.74	810.67	953.74 810.67 1107.50 1043.25 1130.86 810.67	043.25	130.86	310.67

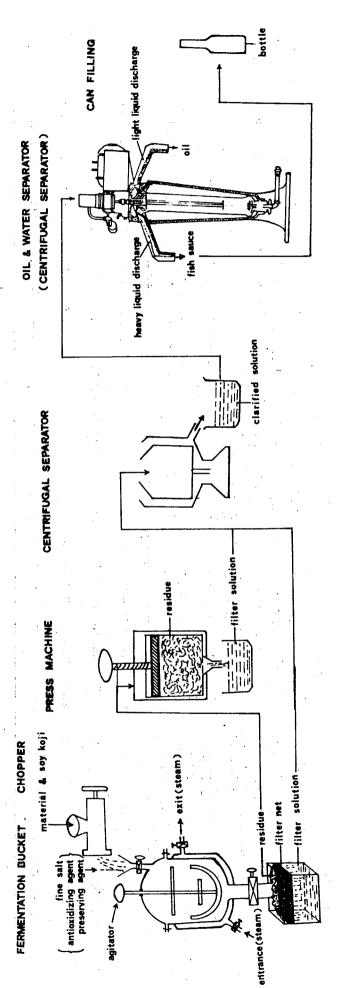


Fig. 4 Procedure for the rapid fermentation of the fish sauce.

魚醬油總氮量(TN)有關,據文獻⁶,中浜敏雄「醬油釀造の最新の技術と研究」一書記載,生醬油總氮量在1.5%或以上者,如含有2~3.5%酒精則不致發黴,致於加熱過醬油,加熱溫度達40℃者,如其總氮量在1.35%以上時,酒精含量在1.5%以上時,則不會發黴,如果提高加熱溫度至55℃及酒精含量達1.5%時,總氮量1.0%以上之醬油俱可防黴。

本試験魚醬油之總氮量在 1.99 ~ 2.85 g/100 ml,添加 3 %酒精後,放置室溫,爲期 12 週的觀察,並無發現黴之生成與變敗,此與浜敏雄「醬油釀造の最新の技術と研究」一書所載相符。

爲便於明瞭本試驗製成之魚醬油與各種不同種類之魚醬油成分比較,以質參考,特編就 Table 5 2)4)。

雖然魚醬油之品質與風味隨添加大豆麴量增多而有顯著改善,但於實際操作過程中,大豆麴添加量超過7%以上時,不僅收率低,而且分離、過濾困難,造成操作上諸多不便,故以添加魚肉量5~7%之大豆麴爲適宜,若欲應用於工業上之大量生產,可參考Fig4中流程圖之方式進行,爲便於操作,可於醱酵桶四周通以蒸氣維持溫度在45±2℃進行釀造,醱酵終止時,直接將溫度提昇至90~100°C加熱後再行過濾。

⁶ 為防止魚醬油裝瓶出廠後發生二次沈澱,亦可採用二段昇溫式低溫殺菌法,即先將生魚醬油加熱至 65 ~ 70 ℃,保持四十分鐘至二小時,然後急速將魚醬油溫度提昇至 80 ℃,再加入酸性白土 0.3 %過濾後冷却,如此可防止魚醬油中所含水溶性蛋白質,不致因長時間高溫加熱,日後凝聚析出之弊端。加熱處理中最需加以留意者,即儘量設法保存醛酵中所產生之揮發性芳香物質,防止其揮發逸失。

摘要

添加大豆麴量 5 % 、 7 % 和 10 % 於狗母魚(臭靑仔)肉中,在 45 ± 2 ℃恒溫下以利加速分解作用,縮短釀造時間,提高魚醬油品質,茲將其品質變化情形及結果摘要如下:

- 1 於試驗中,添加大豆麴 5 %、 7 %和 10 %三組至 12 日起分解作用均呈緩和。
- 2. 釀造期間 pH 的變化甚微,製成的魚醬油均屬微酸性。
- 3.添加 5%、 7%和 10%等不同大豆麴量製成的魚醬油,收率最高者達 50.28% (使用大豆麴量 5%)隨著添加大豆麴量的增多而減少,最少者爲 34.64% (使用大豆麴量 10%)。
- 4. 添加 $5 \cdot 7$ 及 10 %等不同大豆麴量製成的魚醬油,其全氮(TN)、胺基態氮(AN)含量隨添加大豆麴量的增多而增加。
 - 5.添加大豆麴量以5~7%爲適宜。
- 6.添加大豆麴製成之魚醬油,官能評鑑結果良好,不像使用 Bromelain 添加時,所製成之魚醬油 有微苦味生成之缺點。
 - 7.本魚醬油成品中添加3%的食用酒精,置於室溫經12週的觀察,無黴之生成與變壞現象發生

第 檍

本試驗無論於構思、方法及報告修改方面,均承蒙賴分所長永順的熱心指導,始得順利完成,謹致萬分謝意。

参考 文獻

- (1) 阿部憲治(1967):南極オキアミを利用した魚醬油。New Food Industry $19\,(1)$, $41\sim43$
- ② 本江元吉(1973):バンコックのしよっつる②・化學と生物・10(1)744~746。

- (3) 林和也(1972):こうじかびのアルカリプロテアーゼ・その構造と機能。 KAGAKO TO SEIBUTSU, 10, Na 11。
- (4) 陳茂松、陳聰松(1978): 南極蝦油製造試驗。「南極蝦加工利用研究(-)」 農復會特刊 31,51 ~63。
- (5) 岸眞之輔(1964):食品添加物便覽。 P. 193,214。
- (6) 楊培醬、陳世爵編(1979):醬油製造專輯。美國黃豆協會,黃豆與製油十週年特刊,P.13, $17,69\sim71$, $95\sim98$ 。
- (7) 霍蓮池(1970):水產醱酵食品。水產製造學P. 487~501。
- (8) 黄堯、陳淑珍:魚醬油速釀法試驗(I)。(未發表)