大尾魷魚養殖試驗

余廷基・董聰彦

Studies on the Culture of Sepiotuthis lessoniana

Ting-Chi Yu and Tsong-Yen Tung

- 1. The average daily feeding rate of Sepioteuthis lessoniana was 6.1% of body weight. The feeding efficiency was 4.2 when fed on tilapias (Oreochromissp.)
- 2. Sepoteuthis lessoniana was not able to endure sudden change of salinity.
- 3. Sepioteuthis lessoniana was carnivorus and not able to feed on large algae growing in the pond.
- 4. Sepioteuthis lessoniana was suitable for cage-culture in sea water.

前言

大尾魷魚俗稱「軟翅仔」,為海產軟體動物,主要分佈於太平洋及印度洋之沿岸,其蛋白質含量高,一般視爲珍品,由於天然產量有限,且受季節性影響未能全年供應,若能利用海埔地魚塩實施養殖,不但有助於分散養殖種類與節省地下水源,也可爲業者提供另一新興純海水養殖之水產物,爲此,本試驗在探討大尾魷魚養殖方式藉以確立最佳飼養方法,作爲推廣之依據。

材料與方法

(→供試驗用魚:大尾魷魚 35 尾自台北縣貢寮鄉,每尾平均體重 68.56 公克。

 \Box 魚池:紅色圓形塑膠桶容量1 噸計4個,水泥池(3.5 \times 5 \times 1.5 m)。

台箱網:黑色硬質塑膠網(1×2×3m)網目爲1 cm。

四餌料:小型吳郭魚及切成塊狀之吳郭魚肉。

山器材:捕捉及測定器材。

二方法:

(→)自產地運回平均體重 68.56 公克之大尾魷魚35尾,由於大尾魷魚運輸易死亡率往往高達 100 %,因此利用運輸機會時進行運輸試驗,作爲改進之準繩,將大尾魷魚20尾平均放入 2 只 0.2 順黑色方型膠桶內,緩降低水溫組分別維持 10 °C 及 20 °C 鹽分濃度同爲32%,利用氧氣瓶不斷供應氧氣,上端用黑布覆蓋遮光。另外 15 尾平均放入之只充滿氧氣之塑膠袋(100 cm×60 cm)裡并置於塑膠桶中,用氷塊加以調節使袋中之水溫各維持爲 10 °C、20 °C、25 °C ,鹽份濃度同爲32%

- , 進行7小時之大尾魷魚活體海水試驗。
- 口由於產地海水鹽分濃度為 32°% 運回分所後,將大尾魷魚 20 尾分成 3 組任意取 10 尾以不經淡化 即放入鹽分濃度 30°%,而所剩 10 則各取 5 尾放入鹽分濃度 25°%、 20°% 各為 1 噸容量的紅色 變 關 桶內,以進行運輸後的耐鹽度試驗。
- 臼在室內塑膠桶中,進行6天之養殖試驗,以探討其適應能力及餌料係數。
- 四在室外水泥地 ($3.5 \times 5 \times 1.5 \text{ m}$),進行21天鹽分濃度 23° %之養殖試驗,以探討其適應能力及餌料係數。
- 伍在室外水泥地,加裝硬質黑色塑膠箱網(3×2×1 m)後放入10尾大尾魷魚,藉以觀察大尾魷 魚在塑膠網養殖之可行性。

結 果

- 一大尾魷魚平均體重 68.56 公克計 35尾,進行運輸試驗,運到分所計花費7小時,其中大尾魷魚 15尾放入3 只充滿氧氣之塑膠袋者,均在運輸途中相繼吐出墨汁導水質惡變而死亡,而其餘利用2只0.2 順黑色塑膠桶所運回之20 尾大尾魷魚則全部活存,見表1。
- 二由於產地鹽分濃度 32°%運回之大尾魷魚20尾,未經淡化即放入各爲鹽分濃度 30°%、25°%、20°%等不同水域中,結果 3 天後僅鹽分濃度 30°%之10尾大尾魷魚活存,其他各組均不能適應鹽分濃度之急遽變化,當天及翌日陸續全部死亡。
- 三平均體重 68.56 公克之大尾魷魚10尾,蓄養於室內塑膠桶中,鹽分濃度 32°%,水溫28.2°C,氣溫29°C,於翌日投飼吳郭魚肉塊及平均體重5-8公克之活吳郭魚,斯時,大尾魷魚呈現旺盛之攝餌現象,其游動方式係以10肢足伸展在最前面,並且利用胴部上的肉鰭做波浪狀擺動而前進,當發現食物時即迅速接近,并利用左右5對不同長度的10足捉住食物,而以最長的足,(足之內側具有3排大小對稱的164個數盤,約佔胴長68%),與其他8 肢足,(其所佔比例各約爲胴長49.2%、47.2%、39.3%、31%,足內側具有2排大小對稱的吸盤)合力將食物傳送口部,大尾魷魚之口腔與咽喉係由强大的咬筋組成球形狀之口部有1對顎片,下片向前,上片向後彼此咬合,并連接佔個長71%的腸,試驗魷魚在室內塑膠桶飼育6天結果其平均日攝食量爲體重約5.2%,因此平均體重自68.5%公克或長爲74.32公克,餌料係數爲3.8。
- 四第7天將10尾移入水泥池(3.5×5×1.5 m)鹽分濃度23°%,透明度30 cm,氣溫29.5°C,水溫28.5°C之環境中進行15天之養成試驗,移動當天投飼吳郭魚內時,大尾魷魚並未攝食,至翌日才恢復攝食,經養成15天,求得平均日攝餌量爲體重的6.1%,其平均體重由74.32公克成長爲90.91公克,餌料係數爲4.2。見表2。
- 五自第21天起將大尾魷魚移入黑色硬質塑膠網(2×3×1 m)內,當天未攝餌,且不能適應其周圍 塑膠網,而聚集於網中心,當人走近時大尾魷魚均移集於箱網之對側,至翌日適應後,投予吳郭魚 肉時,大尾魷魚即在水深 0.5 m處迅速游向魚肉塊,并接近投餵者,離開網中心,在箱網內飼養 4 天之後其日攝食量爲 4.2 %,然而在第 5 天適逢豪雨,以致養成池及海水蓄水池內的鹽分濃 度由 23°%急邊降至18%,導致大尾魷魚陸續死亡,由本試驗得知大尾魷魚比較不能適應鹽分的急遽變 化及低濃度之海水中。

討 論

一實施大尾魷魚運輸試驗得知,在運輸時容易因受驚嚇而大量排出墨汁,以致影響運輸容器中之水質,由本試驗得知,將大尾魷魚裝入塑膠袋者,因塑膠袋容積小使大尾魷魚碰撞袋壁途中固定不易劇 烈遙動容易使大尾魷魚因受驚嚇而大量吐出墨汁以致水質變惡,導致死亡,所以不宜用塑膠袋來搬

表 1 大尾魷魚(A)黑色塑膠桶(B)塑膠袋等器具內經 7 小時運輸之活存尾數比較 Table 1 Survival rate of Sepioteuthis lessoniana after 7 hours transportation in (A) black plastic tanks (B) plastic bags.

		(A)			(B)	
da te		A	В	A	В	С
1987.8	Water temp (°C)	10	20	10	20	25
t	No. of fish	10	10	5	5	5
	Salinith (%)	32	32	32	32	32
	No. of death	0	0	5	. 5	5
*	No. of survival	10	10	0	• 0	0
į	Survival rate (%)	100	100	- 0	0	0

表 2 大尾魷魚攝食吳郭魚肉之成長情形(1987年8月2日至8月23日)
Table 2 The growth condition of Sepioteuthis lessoniana feed on tilapia (from 1987 8.2 to 8.23)

ate	Rate of stocking (no. stocked)	Mean body weight(initial) (g)	Mean body weight(final) (g)	Feed efficiency	Mean water temperature (°C)	Mean salinity (%)
7.8.2	10	68,56		-	28,2	30
8.8	10	74.32	74.32	3.8	28.5	30
8.23	10	-	90.91	4.2	28.4	25

大尾魷魚。

- 二大尾魷魚棲息於鹽分濃度 32°%之海水中,當以人為所移入鹽分濃度 30°%之10尾大尾魷魚 6 天,其鹽分濃度由 30°%慢慢淡化至 23°%時大尾魷魚尚能適應而活存,但大尾魷魚適應在鹽分濃度 32°%時若未經淡化,在短時間內將海水鹽分濃度改變為 25°%、 20°%時,大尾魷魚不能適應鹽分濃度之急遽變化而死亡,賴、尤(1981),章魚對比重之下降亦甚為嫌惡與敏感,當海水比重降至 21%左右時,即會向深海處移動。
- 三由本試驗得知大尾魷魚攝食量大,爲其體重的5.2%,投飼吳郭魚的餌料係數爲3.8 成長迅速,賴、尤(1981)章魚之每日投餌量爲放養總體重之6-7%,最好能分兩次投餵,依據日本之試驗報告,以雜魚類、小螃蟹、虾蛄等投餵之增肉係數爲4.8-5.94。
- .四大尾魷魚在水泥池飼養,屬肉食性軟體動物,比較喜歡高鹽分及透明度高之海水,因此實施大尾魷 魚單一養殖時,養殖池內容易繁生藻絲,是否能混養一些草食性魚貝類,尚待探討。
- 五賴、尤(1981)在海水箱網養殖章魚成效頗佳,又一般箱網養魚如果飼料投餵不當則容易流失,大

尾魷魚屬頭足網有結構良好的10足,捕食能力强,所以飼料較不易流失。

摘 要

- 一大尾魷魚游動時以十足在前面,內鰭做波浪擺動而前進。
- 二大尾鱿魚平均日攝量爲體重的5.2%,攝食吳郭魚肉之餌料係數爲3.8。
- 三大尾魷魚不能適應鹽分濃度之急遽變化。
- 四大尾鮵魚屬肉食性軟體動物,無法攝食養殖池內的大型藻類。
- 五大尾魷魚屬頭足網其捕食能力强,適合海水箱網養殖

参考文獻

- 1. Culture of Squid Aquaculture (1972). 786 789.
- 2.賴仲謀、尤伸森(1981).章魚養殖(上)。養魚世界,17-21.
- 3.賴仲謀、尤仲森(1981)。章魚養殖(下)。養殖世界,22-28。